Generation and Syzygies of the First Secant Variety
نویسنده
چکیده
We show that the secant variety to a smooth variety embedded by a sufficiently positive line bundle satisfies N3,p. For smooth curves, we find the effective bound of degree at least max ̆ 3g + 3 + p, 1 2 (7g + 4 + p) ̄
منابع مشابه
Syzygies of the Secant Variety of a Curve
We show the secant variety of a linearly normal smooth curve of degree at least 2g + 3 is arithmetically Cohen-Macaulay, and we use this information to study the graded Betti numbers of the secant variety.
متن کاملResults on Secant Varieties Leading to a Geometric Flip Construction
We study the relationship between the equations defining a projective variety and properties of its secant varieties. In particular, we use information about the syzygies among the defining equations to derive smoothness and normality statements about SecX and also to obtain information about linear systems on the blow up of projective space along a variety X. We use these results to geometrica...
متن کاملSome Results on Secant Varieties Leading to a Geometric Flip Construction
We study the relationship between the equations defining a projective variety and properties of its secant varieties. In particular, we use information about the syzygies among the defining equations to derive smoothness and normality statements about SecX and also to obtain information about linear systems on the blow up of projective space along a variety X. We use these results to geometrica...
متن کاملSyzygies of Segre Embeddings and ∆-modules
We study syzygies of the Segre embedding of P(V1) × · · · × P(Vn), and prove two finiteness results. First, for fixed p but varying n and Vi, there is a finite list of “master p-syzygies” from which all other p-syzygies can be derived by simple substitutions. Second, we define a power series fp with coefficients in something like the Schur algebra, which contains essentially all the information...
متن کاملThe Generic Green-lazarsfeld Secant Conjecture
Using lattice theory on specialK3 surfaces, calculations on moduli stacks of pointed curves and Voisin’s proof of Green’s Conjecture on syzygies of canonical curves, we prove the Prym-Green Conjecture on the naturality of the resolution of a general Prym-canonical curve of odd genus, as well as (many cases of) the Green-Lazarsfeld Secant Conjecture on syzygies of non-special line bundles on gen...
متن کامل